Reproduce lecture slides demo
HW2
Dr. Hua Zhou’s slides
rm(list = ls()) # clean-up workspace
library("tidyverse")
## ── Attaching packages ────────────────────────────────────────────────────────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.2 ✓ purrr 0.3.4
## ✓ tibble 3.0.3 ✓ dplyr 1.0.2
## ✓ tidyr 1.1.2 ✓ stringr 1.4.0
## ✓ readr 1.3.1 ✓ forcats 0.5.0
## ── Conflicts ───────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library("nycflights13")
mutate()
Add variables gain
and speed
:
flights_sml <-
select(flights, year:day, ends_with("delay"), distance, air_time)
flights_sml
## # A tibble: 336,776 x 7
## year month day dep_delay arr_delay distance air_time
## <int> <int> <int> <dbl> <dbl> <dbl> <dbl>
## 1 2013 1 1 2 11 1400 227
## 2 2013 1 1 4 20 1416 227
## 3 2013 1 1 2 33 1089 160
## 4 2013 1 1 -1 -18 1576 183
## 5 2013 1 1 -6 -25 762 116
## 6 2013 1 1 -4 12 719 150
## 7 2013 1 1 -5 19 1065 158
## 8 2013 1 1 -3 -14 229 53
## 9 2013 1 1 -3 -8 944 140
## 10 2013 1 1 -2 8 733 138
## # … with 336,766 more rows
mutate(flights_sml,
gain = arr_delay - dep_delay,
speed = distance / air_time * 60
)
## # A tibble: 336,776 x 9
## year month day dep_delay arr_delay distance air_time gain speed
## <int> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2013 1 1 2 11 1400 227 9 370.
## 2 2013 1 1 4 20 1416 227 16 374.
## 3 2013 1 1 2 33 1089 160 31 408.
## 4 2013 1 1 -1 -18 1576 183 -17 517.
## 5 2013 1 1 -6 -25 762 116 -19 394.
## 6 2013 1 1 -4 12 719 150 16 288.
## 7 2013 1 1 -5 19 1065 158 24 404.
## 8 2013 1 1 -3 -14 229 53 -11 259.
## 9 2013 1 1 -3 -8 944 140 -5 405.
## 10 2013 1 1 -2 8 733 138 10 319.
## # … with 336,766 more rows
Refer to columns that you’ve just created:
mutate(flights_sml,
gain = arr_delay - dep_delay,
hours = air_time %/% 60,
minute = air_time %% 60,
gain_per_hour = gain / (hours + minute / 60)
)
## # A tibble: 336,776 x 11
## year month day dep_delay arr_delay distance air_time gain hours minute
## <int> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2013 1 1 2 11 1400 227 9 3 47
## 2 2013 1 1 4 20 1416 227 16 3 47
## 3 2013 1 1 2 33 1089 160 31 2 40
## 4 2013 1 1 -1 -18 1576 183 -17 3 3
## 5 2013 1 1 -6 -25 762 116 -19 1 56
## 6 2013 1 1 -4 12 719 150 16 2 30
## 7 2013 1 1 -5 19 1065 158 24 2 38
## 8 2013 1 1 -3 -14 229 53 -11 0 53
## 9 2013 1 1 -3 -8 944 140 -5 2 20
## 10 2013 1 1 -2 8 733 138 10 2 18
## # … with 336,766 more rows, and 1 more variable: gain_per_hour <dbl>
Modular arithmetic: %/%
(integer division) and %%
(remainder).
Only keep the new variables by transmute()
:
transmute(flights,
gain = arr_delay - dep_delay,
hours = air_time %/% 60,
minute = air_time %% 60,
gain_per_hour = gain / (hours + minute / 60)
)
## # A tibble: 336,776 x 4
## gain hours minute gain_per_hour
## <dbl> <dbl> <dbl> <dbl>
## 1 9 3 47 2.38
## 2 16 3 47 4.23
## 3 31 2 40 11.6
## 4 -17 3 3 -5.57
## 5 -19 1 56 -9.83
## 6 16 2 30 6.4
## 7 24 2 38 9.11
## 8 -11 0 53 -12.5
## 9 -5 2 20 -2.14
## 10 10 2 18 4.35
## # … with 336,766 more rows
across()
: apply a function (or a set of functions) to a set of columns
flights %>%
transmute(across(1:4, list(log = log, log2 = log2)))
## # A tibble: 336,776 x 8
## year_log year_log2 month_log month_log2 day_log day_log2 dep_time_log
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 7.61 11.0 0 0 0 0 6.25
## 2 7.61 11.0 0 0 0 0 6.28
## 3 7.61 11.0 0 0 0 0 6.30
## 4 7.61 11.0 0 0 0 0 6.30
## 5 7.61 11.0 0 0 0 0 6.32
## 6 7.61 11.0 0 0 0 0 6.32
## 7 7.61 11.0 0 0 0 0 6.32
## 8 7.61 11.0 0 0 0 0 6.32
## 9 7.61 11.0 0 0 0 0 6.32
## 10 7.61 11.0 0 0 0 0 6.32
## # … with 336,766 more rows, and 1 more variable: dep_time_log2 <dbl>
apply funs of one type
flights %>%
filter(dep_delay > 0 & arr_delay > 0) %>%
transmute(across(where(is.numeric), log))
## # A tibble: 92,303 x 14
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 7.61 0 0 6.25 6.24 0.693 6.72 6.71
## 2 7.61 0 0 6.28 6.27 1.39 6.75 6.72
## 3 7.61 0 0 6.30 6.29 0.693 6.83 6.75
## 4 7.61 0 0 6.41 6.40 2.08 6.69 6.60
## 5 7.61 0 0 6.42 6.40 2.40 6.85 6.84
## 6 7.61 0 0 6.42 6.41 1.10 6.83 6.83
## 7 7.61 0 0 6.43 6.41 2.56 6.82 6.82
## 8 7.61 0 0 6.45 6.41 3.18 6.61 6.59
## 9 7.61 0 0 6.55 6.55 0.693 6.96 6.92
## 10 7.61 0 0 6.56 6.55 2.20 6.75 6.72
## # … with 92,293 more rows, and 6 more variables: arr_delay <dbl>, flight <dbl>,
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>
summarise()
collapses a data frame to a single row.
Not very useful unless paired with group_by()
.
group_by()
changes the unit of the analysis from the complete dataset to individual groups.
Mean of a variable:
(by_day <- group_by(flights, year, month, day))
## # A tibble: 336,776 x 19
## # Groups: year, month, day [365]
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## 7 2013 1 1 555 600 -5 913 854
## 8 2013 1 1 557 600 -3 709 723
## 9 2013 1 1 557 600 -3 838 846
## 10 2013 1 1 558 600 -2 753 745
## # … with 336,766 more rows, and 11 more variables: arr_delay <dbl>,
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
summarise(by_day, delay = mean(dep_delay, na.rm = TRUE))
## `summarise()` regrouping output by 'year', 'month' (override with `.groups` argument)
## # A tibble: 365 x 4
## # Groups: year, month [12]
## year month day delay
## <int> <int> <int> <dbl>
## 1 2013 1 1 11.5
## 2 2013 1 2 13.9
## 3 2013 1 3 11.0
## 4 2013 1 4 8.95
## 5 2013 1 5 5.73
## 6 2013 1 6 7.15
## 7 2013 1 7 5.42
## 8 2013 1 8 2.55
## 9 2013 1 9 2.28
## 10 2013 1 10 2.84
## # … with 355 more rows
Convert a tibble into a grouped tibble:
(by_day <- group_by(flights, year, month, day))
Grouped summaries:
summarise(by_day, delay = mean(dep_delay, na.rm = TRUE))
Consider following analysis:
by_dest <- group_by(flights, dest)
delay <- summarise(by_dest, count = n(),
dist = mean(distance, na.rm = TRUE),
delay = mean(arr_delay, na.rm = TRUE)
)
delay <- filter(delay, count > 20, dest != "HNL")
delay
## # A tibble: 96 x 4
## dest count dist delay
## <chr> <int> <dbl> <dbl>
## 1 ABQ 254 1826 4.38
## 2 ACK 265 199 4.85
## 3 ALB 439 143 14.4
## 4 ATL 17215 757. 11.3
## 5 AUS 2439 1514. 6.02
## 6 AVL 275 584. 8.00
## 7 BDL 443 116 7.05
## 8 BGR 375 378 8.03
## 9 BHM 297 866. 16.9
## 10 BNA 6333 758. 11.8
## # … with 86 more rows
n()
count for each sub-group
sum(!is.na(x))
counts for all non-missing values
Cleaner code using pipe %>%
:
delays <- flights %>%
group_by(dest) %>%
summarise(
count = n(),
dist = mean(distance, na.rm = TRUE),
delay = mean(arr_delay, na.rm = TRUE)
) %>%
filter(count > 20, dest != "HNL")
## `summarise()` ungrouping output (override with `.groups` argument)
delays
## # A tibble: 96 x 4
## dest count dist delay
## <chr> <int> <dbl> <dbl>
## 1 ABQ 254 1826 4.38
## 2 ACK 265 199 4.85
## 3 ALB 439 143 14.4
## 4 ATL 17215 757. 11.3
## 5 AUS 2439 1514. 6.02
## 6 AVL 275 584. 8.00
## 7 BDL 443 116 7.05
## 8 BGR 375 378 8.03
## 9 BHM 297 866. 16.9
## 10 BNA 6333 758. 11.8
## # … with 86 more rows
ggplot2 accepts pipe too.
delays %>%
ggplot(mapping = aes(x = dist, y = delay)) +
geom_point(aes(size = count), alpha = 1/3) +
geom_smooth(se = FALSE)
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
Measures of Location: mean(x)
, median(x)
.
not_cancelled <- flights %>% filter(!is.na(dep_delay), !is.na(arr_delay))
not_cancelled
## # A tibble: 327,346 x 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## 7 2013 1 1 555 600 -5 913 854
## 8 2013 1 1 557 600 -3 709 723
## 9 2013 1 1 557 600 -3 838 846
## 10 2013 1 1 558 600 -2 753 745
## # … with 327,336 more rows, and 11 more variables: arr_delay <dbl>,
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
not_cancelled %>%
group_by(year, month, day) %>%
summarise(
avg_delay = mean(arr_delay),
avg_pos_delay = mean(arr_delay[arr_delay > 0]) # the average positive delay
)
## `summarise()` regrouping output by 'year', 'month' (override with `.groups` argument)
## # A tibble: 365 x 5
## # Groups: year, month [12]
## year month day avg_delay avg_pos_delay
## <int> <int> <int> <dbl> <dbl>
## 1 2013 1 1 12.7 32.5
## 2 2013 1 2 12.7 32.0
## 3 2013 1 3 5.73 27.7
## 4 2013 1 4 -1.93 28.3
## 5 2013 1 5 -1.53 22.6
## 6 2013 1 6 4.24 24.4
## 7 2013 1 7 -4.95 27.8
## 8 2013 1 8 -3.23 20.8
## 9 2013 1 9 -0.264 25.6
## 10 2013 1 10 -5.90 27.3
## # … with 355 more rows
Measures of Spread: sd(x)
, IQR(x)
, mad(x)
.
sd()
standard deviation
IQR()
interquartile range
mad()
median absolute deviation
not_cancelled %>%
group_by(dest) %>%
summarise(distance_sd = sd(distance)) %>%
arrange(desc(distance_sd))
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 104 x 2
## dest distance_sd
## <chr> <dbl>
## 1 EGE 10.5
## 2 SAN 10.4
## 3 SFO 10.2
## 4 HNL 10.0
## 5 SEA 9.98
## 6 LAS 9.91
## 7 PDX 9.87
## 8 PHX 9.86
## 9 LAX 9.66
## 10 IND 9.46
## # … with 94 more rows
Measures of Rank: min(x)
, quantile(x, 0.25)
, max(x)
.
# When do the first and last flights leave each day?
not_cancelled %>%
group_by(year, month, day) %>%
summarise(
first = min(dep_time),
last = max(dep_time)
)
## `summarise()` regrouping output by 'year', 'month' (override with `.groups` argument)
## # A tibble: 365 x 5
## # Groups: year, month [12]
## year month day first last
## <int> <int> <int> <int> <int>
## 1 2013 1 1 517 2356
## 2 2013 1 2 42 2354
## 3 2013 1 3 32 2349
## 4 2013 1 4 25 2358
## 5 2013 1 5 14 2357
## 6 2013 1 6 16 2355
## 7 2013 1 7 49 2359
## 8 2013 1 8 454 2351
## 9 2013 1 9 2 2252
## 10 2013 1 10 3 2320
## # … with 355 more rows
Measures of Position: first(x)
, nth(x, 2)
, last(x)
.
not_cancelled %>%
group_by(year, month, day) %>%
summarise(
first_dep = first(dep_time),
last_dep = last(dep_time)
)
## `summarise()` regrouping output by 'year', 'month' (override with `.groups` argument)
## # A tibble: 365 x 5
## # Groups: year, month [12]
## year month day first_dep last_dep
## <int> <int> <int> <int> <int>
## 1 2013 1 1 517 2356
## 2 2013 1 2 42 2354
## 3 2013 1 3 32 2349
## 4 2013 1 4 25 2358
## 5 2013 1 5 14 2357
## 6 2013 1 6 16 2355
## 7 2013 1 7 49 2359
## 8 2013 1 8 454 2351
## 9 2013 1 9 2 2252
## 10 2013 1 10 3 2320
## # … with 355 more rows
Count: n(x)
, sum(!is.na(x))
, n_distinct(x)
.
# Which destinations have the most carriers?
not_cancelled %>%
group_by(dest) %>%
summarise(carriers = n_distinct(carrier)) %>%
arrange(desc(carriers))
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 104 x 2
## dest carriers
## <chr> <int>
## 1 ATL 7
## 2 BOS 7
## 3 CLT 7
## 4 ORD 7
## 5 TPA 7
## 6 AUS 6
## 7 DCA 6
## 8 DTW 6
## 9 IAD 6
## 10 MSP 6
## # … with 94 more rows
not_cancelled %>%
count(dest)
## # A tibble: 104 x 2
## dest n
## <chr> <int>
## 1 ABQ 254
## 2 ACK 264
## 3 ALB 418
## 4 ANC 8
## 5 ATL 16837
## 6 AUS 2411
## 7 AVL 261
## 8 BDL 412
## 9 BGR 358
## 10 BHM 269
## # … with 94 more rows
# total number of miles a plane flew
not_cancelled %>%
count(tailnum, wt = distance)
## # A tibble: 4,037 x 2
## tailnum n
## <chr> <dbl>
## 1 D942DN 3418
## 2 N0EGMQ 239143
## 3 N10156 109664
## 4 N102UW 25722
## 5 N103US 24619
## 6 N104UW 24616
## 7 N10575 139903
## 8 N105UW 23618
## 9 N107US 21677
## 10 N108UW 32070
## # … with 4,027 more rows
# How many flights left before 5am? (these usually indicate delayed
# flights from the previous day)
not_cancelled %>%
group_by(year, month, day) %>%
summarise(n_early = sum(dep_time < 500))
## `summarise()` regrouping output by 'year', 'month' (override with `.groups` argument)
## # A tibble: 365 x 4
## # Groups: year, month [12]
## year month day n_early
## <int> <int> <int> <int>
## 1 2013 1 1 0
## 2 2013 1 2 3
## 3 2013 1 3 4
## 4 2013 1 4 3
## 5 2013 1 5 3
## 6 2013 1 6 2
## 7 2013 1 7 2
## 8 2013 1 8 1
## 9 2013 1 9 3
## 10 2013 1 10 3
## # … with 355 more rows
# What proportion of flights are delayed by more than an hour?
not_cancelled %>%
group_by(year, month, day) %>%
summarise(hour_perc = mean(arr_delay > 60))
## `summarise()` regrouping output by 'year', 'month' (override with `.groups` argument)
## # A tibble: 365 x 4
## # Groups: year, month [12]
## year month day hour_perc
## <int> <int> <int> <dbl>
## 1 2013 1 1 0.0722
## 2 2013 1 2 0.0851
## 3 2013 1 3 0.0567
## 4 2013 1 4 0.0396
## 5 2013 1 5 0.0349
## 6 2013 1 6 0.0470
## 7 2013 1 7 0.0333
## 8 2013 1 8 0.0213
## 9 2013 1 9 0.0202
## 10 2013 1 10 0.0183
## # … with 355 more rows
Recall the flights_sml
tibble created earlier:
flights_sml
## # A tibble: 336,776 x 7
## year month day dep_delay arr_delay distance air_time
## <int> <int> <int> <dbl> <dbl> <dbl> <dbl>
## 1 2013 1 1 2 11 1400 227
## 2 2013 1 1 4 20 1416 227
## 3 2013 1 1 2 33 1089 160
## 4 2013 1 1 -1 -18 1576 183
## 5 2013 1 1 -6 -25 762 116
## 6 2013 1 1 -4 12 719 150
## 7 2013 1 1 -5 19 1065 158
## 8 2013 1 1 -3 -14 229 53
## 9 2013 1 1 -3 -8 944 140
## 10 2013 1 1 -2 8 733 138
## # … with 336,766 more rows
Find the worst members of each group:
flights_sml %>%
group_by(year, month, day) %>%
filter(rank(desc(arr_delay)) < 10)
## # A tibble: 3,306 x 7
## # Groups: year, month, day [365]
## year month day dep_delay arr_delay distance air_time
## <int> <int> <int> <dbl> <dbl> <dbl> <dbl>
## 1 2013 1 1 853 851 184 41
## 2 2013 1 1 290 338 1134 213
## 3 2013 1 1 260 263 266 46
## 4 2013 1 1 157 174 213 60
## 5 2013 1 1 216 222 708 121
## 6 2013 1 1 255 250 589 115
## 7 2013 1 1 285 246 1085 146
## 8 2013 1 1 192 191 199 44
## 9 2013 1 1 379 456 1092 222
## 10 2013 1 2 224 207 550 94
## # … with 3,296 more rows
Find all groups bigger than a threshold:
(popular_dests <- flights %>%
group_by(dest) %>%
filter(n() > 365))
## # A tibble: 332,577 x 19
## # Groups: dest [77]
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## 7 2013 1 1 555 600 -5 913 854
## 8 2013 1 1 557 600 -3 709 723
## 9 2013 1 1 557 600 -3 838 846
## 10 2013 1 1 558 600 -2 753 745
## # … with 332,567 more rows, and 11 more variables: arr_delay <dbl>,
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
Standardise to compute per group metrics:
popular_dests %>%
filter(arr_delay > 0) %>%
mutate(prop_delay = arr_delay / sum(arr_delay)) %>%
select(year:day, dest, arr_delay, prop_delay)
## # A tibble: 131,106 x 6
## # Groups: dest [77]
## year month day dest arr_delay prop_delay
## <int> <int> <int> <chr> <dbl> <dbl>
## 1 2013 1 1 IAH 11 0.000111
## 2 2013 1 1 IAH 20 0.000201
## 3 2013 1 1 MIA 33 0.000235
## 4 2013 1 1 ORD 12 0.0000424
## 5 2013 1 1 FLL 19 0.0000938
## 6 2013 1 1 ORD 8 0.0000283
## 7 2013 1 1 LAX 7 0.0000344
## 8 2013 1 1 DFW 31 0.000282
## 9 2013 1 1 ATL 12 0.0000400
## 10 2013 1 1 DTW 16 0.000116
## # … with 131,096 more rows
nycflights13 package has >1 tables:
We already know a lot about flights:
flights %>% print(width = Inf)
## # A tibble: 336,776 x 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## 7 2013 1 1 555 600 -5 913 854
## 8 2013 1 1 557 600 -3 709 723
## 9 2013 1 1 557 600 -3 838 846
## 10 2013 1 1 558 600 -2 753 745
## arr_delay carrier flight tailnum origin dest air_time distance hour minute
## <dbl> <chr> <int> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 11 UA 1545 N14228 EWR IAH 227 1400 5 15
## 2 20 UA 1714 N24211 LGA IAH 227 1416 5 29
## 3 33 AA 1141 N619AA JFK MIA 160 1089 5 40
## 4 -18 B6 725 N804JB JFK BQN 183 1576 5 45
## 5 -25 DL 461 N668DN LGA ATL 116 762 6 0
## 6 12 UA 1696 N39463 EWR ORD 150 719 5 58
## 7 19 B6 507 N516JB EWR FLL 158 1065 6 0
## 8 -14 EV 5708 N829AS LGA IAD 53 229 6 0
## 9 -8 B6 79 N593JB JFK MCO 140 944 6 0
## 10 8 AA 301 N3ALAA LGA ORD 138 733 6 0
## time_hour
## <dttm>
## 1 2013-01-01 05:00:00
## 2 2013-01-01 05:00:00
## 3 2013-01-01 05:00:00
## 4 2013-01-01 05:00:00
## 5 2013-01-01 06:00:00
## 6 2013-01-01 05:00:00
## 7 2013-01-01 06:00:00
## 8 2013-01-01 06:00:00
## 9 2013-01-01 06:00:00
## 10 2013-01-01 06:00:00
## # … with 336,766 more rows
airlines:
airlines
## # A tibble: 16 x 2
## carrier name
## <chr> <chr>
## 1 9E Endeavor Air Inc.
## 2 AA American Airlines Inc.
## 3 AS Alaska Airlines Inc.
## 4 B6 JetBlue Airways
## 5 DL Delta Air Lines Inc.
## 6 EV ExpressJet Airlines Inc.
## 7 F9 Frontier Airlines Inc.
## 8 FL AirTran Airways Corporation
## 9 HA Hawaiian Airlines Inc.
## 10 MQ Envoy Air
## 11 OO SkyWest Airlines Inc.
## 12 UA United Air Lines Inc.
## 13 US US Airways Inc.
## 14 VX Virgin America
## 15 WN Southwest Airlines Co.
## 16 YV Mesa Airlines Inc.
airports:
airports
## # A tibble: 1,458 x 8
## faa name lat lon alt tz dst tzone
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
## 1 04G Lansdowne Airport 41.1 -80.6 1044 -5 A America/New_Yo…
## 2 06A Moton Field Municipal A… 32.5 -85.7 264 -6 A America/Chicago
## 3 06C Schaumburg Regional 42.0 -88.1 801 -6 A America/Chicago
## 4 06N Randall Airport 41.4 -74.4 523 -5 A America/New_Yo…
## 5 09J Jekyll Island Airport 31.1 -81.4 11 -5 A America/New_Yo…
## 6 0A9 Elizabethton Municipal … 36.4 -82.2 1593 -5 A America/New_Yo…
## 7 0G6 Williams County Airport 41.5 -84.5 730 -5 A America/New_Yo…
## 8 0G7 Finger Lakes Regional A… 42.9 -76.8 492 -5 A America/New_Yo…
## 9 0P2 Shoestring Aviation Air… 39.8 -76.6 1000 -5 U America/New_Yo…
## 10 0S9 Jefferson County Intl 48.1 -123. 108 -8 A America/Los_An…
## # … with 1,448 more rows
planes:
planes
## # A tibble: 3,322 x 9
## tailnum year type manufacturer model engines seats speed engine
## <chr> <int> <chr> <chr> <chr> <int> <int> <int> <chr>
## 1 N10156 2004 Fixed wing m… EMBRAER EMB-1… 2 55 NA Turbo-…
## 2 N102UW 1998 Fixed wing m… AIRBUS INDUST… A320-… 2 182 NA Turbo-…
## 3 N103US 1999 Fixed wing m… AIRBUS INDUST… A320-… 2 182 NA Turbo-…
## 4 N104UW 1999 Fixed wing m… AIRBUS INDUST… A320-… 2 182 NA Turbo-…
## 5 N10575 2002 Fixed wing m… EMBRAER EMB-1… 2 55 NA Turbo-…
## 6 N105UW 1999 Fixed wing m… AIRBUS INDUST… A320-… 2 182 NA Turbo-…
## 7 N107US 1999 Fixed wing m… AIRBUS INDUST… A320-… 2 182 NA Turbo-…
## 8 N108UW 1999 Fixed wing m… AIRBUS INDUST… A320-… 2 182 NA Turbo-…
## 9 N109UW 1999 Fixed wing m… AIRBUS INDUST… A320-… 2 182 NA Turbo-…
## 10 N110UW 1999 Fixed wing m… AIRBUS INDUST… A320-… 2 182 NA Turbo-…
## # … with 3,312 more rows
Weather:
weather
## # A tibble: 26,115 x 15
## origin year month day hour temp dewp humid wind_dir wind_speed
## <chr> <int> <int> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 EWR 2013 1 1 1 39.0 26.1 59.4 270 10.4
## 2 EWR 2013 1 1 2 39.0 27.0 61.6 250 8.06
## 3 EWR 2013 1 1 3 39.0 28.0 64.4 240 11.5
## 4 EWR 2013 1 1 4 39.9 28.0 62.2 250 12.7
## 5 EWR 2013 1 1 5 39.0 28.0 64.4 260 12.7
## 6 EWR 2013 1 1 6 37.9 28.0 67.2 240 11.5
## 7 EWR 2013 1 1 7 39.0 28.0 64.4 240 15.0
## 8 EWR 2013 1 1 8 39.9 28.0 62.2 250 10.4
## 9 EWR 2013 1 1 9 39.9 28.0 62.2 260 15.0
## 10 EWR 2013 1 1 10 41 28.0 59.6 260 13.8
## # … with 26,105 more rows, and 5 more variables: wind_gust <dbl>, precip <dbl>,
## # pressure <dbl>, visib <dbl>, time_hour <dttm>
A primary key uniquely identifies an observation in its own table.
single variable, e.g., tailnum
for each plane
multiple variables, e.g., year
, month
, day
, hour
, and origin
to identify an observation in weather
A foreign key uniquely identifies an observation in another table.
Good practice: verify the primary keys by using count()
planes %>%
count(tailnum) %>%
filter(n > 1)
## # A tibble: 0 x 2
## # … with 2 variables: tailnum <chr>, n <int>
weather %>%
count(year, month, day, hour, origin) %>%
filter(n > 1)
## # A tibble: 3 x 6
## year month day hour origin n
## <int> <int> <int> <int> <chr> <int>
## 1 2013 11 3 1 EWR 2
## 2 2013 11 3 1 JFK 2
## 3 2013 11 3 1 LGA 2
(x <- tribble(
~key, ~val_x,
1, "x1",
2, "x2",
3, "x3"
))
## # A tibble: 3 x 2
## key val_x
## <dbl> <chr>
## 1 1 x1
## 2 2 x2
## 3 3 x3
(y <- tribble(
~key, ~val_y,
1, "y1",
2, "y2",
4, "y3"
))
## # A tibble: 3 x 2
## key val_y
## <dbl> <chr>
## 1 1 y1
## 2 2 y2
## 3 4 y3
inner_join(x, y, by = "key")
## # A tibble: 2 x 3
## key val_x val_y
## <dbl> <chr> <chr>
## 1 1 x1 y1
## 2 2 x2 y2
Same as
x %>% inner_join(y, by = "key")
Generally not appropriate for use because of loss of observations
An outer join keeps observations that appear in at least one of the tables.
Three types of outer joins:
x
.left_join(x, y, by = "key")
## # A tibble: 3 x 3
## key val_x val_y
## <dbl> <chr> <chr>
## 1 1 x1 y1
## 2 2 x2 y2
## 3 3 x3 <NA>
y
.right_join(x, y, by = "key")
## # A tibble: 3 x 3
## key val_x val_y
## <dbl> <chr> <chr>
## 1 1 x1 y1
## 2 2 x2 y2
## 3 4 <NA> y3
x
or y
.full_join(x, y, by = "key")
## # A tibble: 4 x 3
## key val_x val_y
## <dbl> <chr> <chr>
## 1 1 x1 y1
## 2 2 x2 y2
## 3 3 x3 <NA>
## 4 4 <NA> y3
One table has duplicate keys.
x <- tribble(
~key, ~val_x,
1, "x1",
2, "x2",
2, "x3",
1, "x4"
)
y <- tribble(
~key, ~val_y,
1, "y1",
2, "y2"
)
left_join(x, y, by = "key")
## # A tibble: 4 x 3
## key val_x val_y
## <dbl> <chr> <chr>
## 1 1 x1 y1
## 2 2 x2 y2
## 3 2 x3 y2
## 4 1 x4 y1
Both tables have duplicate keys. You get all possible combinations, the Cartesian product:
x <- tribble(
~key, ~val_x,
1, "x1",
2, "x2",
2, "x3",
3, "x4"
)
y <- tribble(
~key, ~val_y,
1, "y1",
2, "y2",
2, "y3",
3, "y4"
)
left_join(x, y, by = "key")
## # A tibble: 6 x 3
## key val_x val_y
## <dbl> <chr> <chr>
## 1 1 x1 y1
## 2 2 x2 y2
## 3 2 x2 y3
## 4 2 x3 y2
## 5 2 x3 y3
## 6 3 x4 y4
Let’s create a narrower table from the flights data:
flights2 <- flights %>%
select(year:day, hour, origin, dest, tailnum, carrier)
flights2
## # A tibble: 336,776 x 8
## year month day hour origin dest tailnum carrier
## <int> <int> <int> <dbl> <chr> <chr> <chr> <chr>
## 1 2013 1 1 5 EWR IAH N14228 UA
## 2 2013 1 1 5 LGA IAH N24211 UA
## 3 2013 1 1 5 JFK MIA N619AA AA
## 4 2013 1 1 5 JFK BQN N804JB B6
## 5 2013 1 1 6 LGA ATL N668DN DL
## 6 2013 1 1 5 EWR ORD N39463 UA
## 7 2013 1 1 6 EWR FLL N516JB B6
## 8 2013 1 1 6 LGA IAD N829AS EV
## 9 2013 1 1 6 JFK MCO N593JB B6
## 10 2013 1 1 6 LGA ORD N3ALAA AA
## # … with 336,766 more rows
We want to merge with the weather
table:
weather
## # A tibble: 26,115 x 15
## origin year month day hour temp dewp humid wind_dir wind_speed
## <chr> <int> <int> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 EWR 2013 1 1 1 39.0 26.1 59.4 270 10.4
## 2 EWR 2013 1 1 2 39.0 27.0 61.6 250 8.06
## 3 EWR 2013 1 1 3 39.0 28.0 64.4 240 11.5
## 4 EWR 2013 1 1 4 39.9 28.0 62.2 250 12.7
## 5 EWR 2013 1 1 5 39.0 28.0 64.4 260 12.7
## 6 EWR 2013 1 1 6 37.9 28.0 67.2 240 11.5
## 7 EWR 2013 1 1 7 39.0 28.0 64.4 240 15.0
## 8 EWR 2013 1 1 8 39.9 28.0 62.2 250 10.4
## 9 EWR 2013 1 1 9 39.9 28.0 62.2 260 15.0
## 10 EWR 2013 1 1 10 41 28.0 59.6 260 13.8
## # … with 26,105 more rows, and 5 more variables: wind_gust <dbl>, precip <dbl>,
## # pressure <dbl>, visib <dbl>, time_hour <dttm>
by = NULL
(default): use all variables that appear in both tables:
# same as: flights2 %>% left_join(weather)
left_join(flights2, weather)
## Joining, by = c("year", "month", "day", "hour", "origin")
## # A tibble: 336,776 x 18
## year month day hour origin dest tailnum carrier temp dewp humid
## <int> <int> <int> <dbl> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
## 1 2013 1 1 5 EWR IAH N14228 UA 39.0 28.0 64.4
## 2 2013 1 1 5 LGA IAH N24211 UA 39.9 25.0 54.8
## 3 2013 1 1 5 JFK MIA N619AA AA 39.0 27.0 61.6
## 4 2013 1 1 5 JFK BQN N804JB B6 39.0 27.0 61.6
## 5 2013 1 1 6 LGA ATL N668DN DL 39.9 25.0 54.8
## 6 2013 1 1 5 EWR ORD N39463 UA 39.0 28.0 64.4
## 7 2013 1 1 6 EWR FLL N516JB B6 37.9 28.0 67.2
## 8 2013 1 1 6 LGA IAD N829AS EV 39.9 25.0 54.8
## 9 2013 1 1 6 JFK MCO N593JB B6 37.9 27.0 64.3
## 10 2013 1 1 6 LGA ORD N3ALAA AA 39.9 25.0 54.8
## # … with 336,766 more rows, and 7 more variables: wind_dir <dbl>,
## # wind_speed <dbl>, wind_gust <dbl>, precip <dbl>, pressure <dbl>,
## # visib <dbl>, time_hour <dttm>
by = "x"
: use the common variable x
:
# same as: flights2 %>% left_join(weather)
left_join(flights2, planes, by = "tailnum")
## # A tibble: 336,776 x 16
## year.x month day hour origin dest tailnum carrier year.y type
## <int> <int> <int> <dbl> <chr> <chr> <chr> <chr> <int> <chr>
## 1 2013 1 1 5 EWR IAH N14228 UA 1999 Fixe…
## 2 2013 1 1 5 LGA IAH N24211 UA 1998 Fixe…
## 3 2013 1 1 5 JFK MIA N619AA AA 1990 Fixe…
## 4 2013 1 1 5 JFK BQN N804JB B6 2012 Fixe…
## 5 2013 1 1 6 LGA ATL N668DN DL 1991 Fixe…
## 6 2013 1 1 5 EWR ORD N39463 UA 2012 Fixe…
## 7 2013 1 1 6 EWR FLL N516JB B6 2000 Fixe…
## 8 2013 1 1 6 LGA IAD N829AS EV 1998 Fixe…
## 9 2013 1 1 6 JFK MCO N593JB B6 2004 Fixe…
## 10 2013 1 1 6 LGA ORD N3ALAA AA NA <NA>
## # … with 336,766 more rows, and 6 more variables: manufacturer <chr>,
## # model <chr>, engines <int>, seats <int>, speed <int>, engine <chr>
by = c("a" = "b")
: match variable a
in table x
to the variable b
in table y
.
# same as: flights2 %>% left_join(weather)
left_join(flights2, airports, by = c("dest" = "faa"))
## # A tibble: 336,776 x 15
## year month day hour origin dest tailnum carrier name lat lon alt
## <int> <int> <int> <dbl> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
## 1 2013 1 1 5 EWR IAH N14228 UA Geor… 30.0 -95.3 97
## 2 2013 1 1 5 LGA IAH N24211 UA Geor… 30.0 -95.3 97
## 3 2013 1 1 5 JFK MIA N619AA AA Miam… 25.8 -80.3 8
## 4 2013 1 1 5 JFK BQN N804JB B6 <NA> NA NA NA
## 5 2013 1 1 6 LGA ATL N668DN DL Hart… 33.6 -84.4 1026
## 6 2013 1 1 5 EWR ORD N39463 UA Chic… 42.0 -87.9 668
## 7 2013 1 1 6 EWR FLL N516JB B6 Fort… 26.1 -80.2 9
## 8 2013 1 1 6 LGA IAD N829AS EV Wash… 38.9 -77.5 313
## 9 2013 1 1 6 JFK MCO N593JB B6 Orla… 28.4 -81.3 96
## 10 2013 1 1 6 LGA ORD N3ALAA AA Chic… 42.0 -87.9 668
## # … with 336,766 more rows, and 3 more variables: tz <dbl>, dst <chr>,
## # tzone <chr>
Top 10 most popular destinations:
top_dest <- flights %>%
count(dest, sort = TRUE) %>%
head(10)
top_dest
## # A tibble: 10 x 2
## dest n
## <chr> <int>
## 1 ORD 17283
## 2 ATL 17215
## 3 LAX 16174
## 4 BOS 15508
## 5 MCO 14082
## 6 CLT 14064
## 7 SFO 13331
## 8 FLL 12055
## 9 MIA 11728
## 10 DCA 9705
How to filter the cases that fly to these destinations?
semi_join(x, y)
keeps the rows in x
that have a match in y
.
Useful to see what will be joined.
semi_join(flights, top_dest)
## Joining, by = "dest"
## # A tibble: 141,145 x 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 542 540 2 923 850
## 2 2013 1 1 554 600 -6 812 837
## 3 2013 1 1 554 558 -4 740 728
## 4 2013 1 1 555 600 -5 913 854
## 5 2013 1 1 557 600 -3 838 846
## 6 2013 1 1 558 600 -2 753 745
## 7 2013 1 1 558 600 -2 924 917
## 8 2013 1 1 558 600 -2 923 937
## 9 2013 1 1 559 559 0 702 706
## 10 2013 1 1 600 600 0 851 858
## # … with 141,135 more rows, and 11 more variables: arr_delay <dbl>,
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
anti_join(x, y)
keeps the rows that don’t have a match.
Useful to see what will not be joined.
flights %>%
anti_join(planes, by = "tailnum") %>%
count(tailnum, sort = TRUE)
## # A tibble: 722 x 2
## tailnum n
## <chr> <int>
## 1 <NA> 2512
## 2 N725MQ 575
## 3 N722MQ 513
## 4 N723MQ 507
## 5 N713MQ 483
## 6 N735MQ 396
## 7 N0EGMQ 371
## 8 N534MQ 364
## 9 N542MQ 363
## 10 N531MQ 349
## # … with 712 more rows
All these operations work with a complete row, comparing the values of every variable.
These operations expect the x
and y
inputs to have the same variables.
Generate two tables:
(df1 <- tribble(
~x, ~y,
1, 1,
2, 1
))
## # A tibble: 2 x 2
## x y
## <dbl> <dbl>
## 1 1 1
## 2 2 1
(df2 <- tribble(
~x, ~y,
1, 1,
1, 2
))
## # A tibble: 2 x 2
## x y
## <dbl> <dbl>
## 1 1 1
## 2 1 2
bind_rows(x, y)
stacks table x
on top of y
.
bind_rows(df1, df2)
## # A tibble: 4 x 2
## x y
## <dbl> <dbl>
## 1 1 1
## 2 2 1
## 3 1 1
## 4 1 2
intersect(x, y)
returns rows that appear in both x
and y
.
intersect(df1, df2)
## # A tibble: 1 x 2
## x y
## <dbl> <dbl>
## 1 1 1
union(x, y)
returns unique observations in x
and y
.
union(df1, df2)
## # A tibble: 3 x 2
## x y
## <dbl> <dbl>
## 1 1 1
## 2 2 1
## 3 1 2
setdiff(x, y)
returns rows that appear in x
but not in y
.
setdiff(df1, df2)
## # A tibble: 1 x 2
## x y
## <dbl> <dbl>
## 1 2 1
setdiff(df2, df1)
## # A tibble: 1 x 2
## x y
## <dbl> <dbl>
## 1 1 2
RStudio cheat sheet is extremely helpful.