Mid-term report due 11/06/2020, 7 points from total 30 points for the whole project (7/30)
Negotiate presentation order switches early
Dr. Hua Zhou’s slides
The gala
data set records the number of plant species and the number of endemic species for 30 Galápagos islands. We are interested in modeling the number of species using a regression.
gala <- as_tibble(gala, rownames = "Island") %>%
print(n = Inf)
## # A tibble: 30 x 8
## Island Species Endemics Area Elevation Nearest Scruz Adjacent
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Baltra 58 23 25.1 346 0.6 0.6 1.84
## 2 Bartolome 31 21 1.24 109 0.6 26.3 572.
## 3 Caldwell 3 3 0.21 114 2.8 58.7 0.78
## 4 Champion 25 9 0.1 46 1.9 47.4 0.18
## 5 Coamano 2 1 0.05 77 1.9 1.9 904.
## 6 Daphne.Major 18 11 0.34 119 8 8 1.84
## 7 Daphne.Minor 24 0 0.08 93 6 12 0.34
## 8 Darwin 10 7 2.33 168 34.1 290. 2.85
## 9 Eden 8 4 0.03 71 0.4 0.4 18.0
## 10 Enderby 2 2 0.18 112 2.6 50.2 0.1
## 11 Espanola 97 26 58.3 198 1.1 88.3 0.570
## 12 Fernandina 93 35 634. 1494 4.3 95.3 4669.
## 13 Gardner1 58 17 0.570 49 1.1 93.1 58.3
## 14 Gardner2 5 4 0.78 227 4.6 62.2 0.21
## 15 Genovesa 40 19 17.4 76 47.4 92.2 129.
## 16 Isabela 347 89 4669. 1707 0.7 28.1 634.
## 17 Marchena 51 23 129. 343 29.1 85.9 59.6
## 18 Onslow 2 2 0.01 25 3.3 45.9 0.1
## 19 Pinta 104 37 59.6 777 29.1 120. 129.
## 20 Pinzon 108 33 18.0 458 10.7 10.7 0.03
## 21 Las.Plazas 12 9 0.23 94 0.5 0.6 25.1
## 22 Rabida 70 30 4.89 367 4.4 24.4 572.
## 23 SanCristobal 280 65 552. 716 45.2 66.6 0.570
## 24 SanSalvador 237 81 572. 906 0.2 19.8 4.89
## 25 SantaCruz 444 95 904. 864 0.6 0 0.52
## 26 SantaFe 62 28 24.1 259 16.5 16.5 0.52
## 27 SantaMaria 285 73 171. 640 2.6 49.2 0.1
## 28 Seymour 44 16 1.84 147 0.6 9.6 25.1
## 29 Tortuga 16 8 1.24 186 6.8 50.9 18.0
## 30 Wolf 21 12 2.85 253 34.1 255. 2.33
A histogram of the number of species
gala %>%
ggplot() +
geom_histogram(mapping = aes(x = Species)) +
labs(title = "Species on Galápagos Islands")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Assume the count response \(Y_i\) follows a Poisson\((\mu_i)\) distribution with density function \[ \mathbb{P}(Y_i = y_i) = e^{-\mu_i} \frac{\mu_i^{y_i}}{y_i!}. \]
The Poisson parameter \(\mu_i\) is related to the predictors via an inverse link function \[ \mu_i = e^{\eta_i}, \] where \(\eta_i\) is the linear predictor or systematic component \[ \eta_i = \mathbf{x}_i^T \boldsymbol{\beta}. \]
The function \[ \eta_i = g(\mu_i) = \log \mu_i \] that links \(\mathbb{E} Y_i = \mu_i\) to the systematic component is called the link function. This particular link function is called the log link function. The Poisson regression model with log link is also called a log-linear model.
Given the \(n\) independent data points \((y_i, \mathbf{x}_i)\), \(i=1,\ldots,n\), the log-likelihood is \[\begin{eqnarray*} \ell(\boldsymbol{\beta}) &=& \sum_i y_i \log \mu_i - \mu_i - \log y_i! \\ &=& \sum_i y_i \cdot \mathbf{x}_i^T \boldsymbol{\beta} - e^{\mathbf{x}_i^T \boldsymbol{\beta}} - \log y_i! \end{eqnarray*}\]
We maximize the log-likelihood function to find the MLE of regression coefficient \(\boldsymbol{\beta}\).
modp <- glm(Species ~ . - Endemics - Island, family = poisson, data = gala)
summary(modp)
##
## Call:
## glm(formula = Species ~ . - Endemics - Island, family = poisson,
## data = gala)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -8.2752 -4.4966 -0.9443 1.9168 10.1849
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.155e+00 5.175e-02 60.963 < 2e-16 ***
## Area -5.799e-04 2.627e-05 -22.074 < 2e-16 ***
## Elevation 3.541e-03 8.741e-05 40.507 < 2e-16 ***
## Nearest 8.826e-03 1.821e-03 4.846 1.26e-06 ***
## Scruz -5.709e-03 6.256e-04 -9.126 < 2e-16 ***
## Adjacent -6.630e-04 2.933e-05 -22.608 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 3510.73 on 29 degrees of freedom
## Residual deviance: 716.85 on 24 degrees of freedom
## AIC: 889.68
##
## Number of Fisher Scoring iterations: 5
library(gtsummary)
modp %>%
tbl_regression(intercept = TRUE)
Characteristic | log(IRR)1 | 95% CI1 | p-value |
---|---|---|---|
(Intercept) | 3.2 | 3.1, 3.3 | <0.001 |
Area | 0.00 | 0.00, 0.00 | <0.001 |
Elevation | 0.00 | 0.00, 0.00 | <0.001 |
Nearest | 0.01 | 0.01, 0.01 | <0.001 |
Scruz | -0.01 | -0.01, 0.00 | <0.001 |
Adjacent | 0.00 | 0.00, 0.00 | <0.001 |
1
IRR = Incidence Rate Ratio, CI = Confidence Interval
|
modp %>%
tbl_regression(intercept = TRUE, exponentiate = TRUE)
Characteristic | IRR1 | 95% CI1 | p-value |
---|---|---|---|
(Intercept) | 23.4 | 21.2, 25.9 | <0.001 |
Area | 1.00 | 1.00, 1.00 | <0.001 |
Elevation | 1.00 | 1.00, 1.00 | <0.001 |
Nearest | 1.01 | 1.01, 1.01 | <0.001 |
Scruz | 0.99 | 0.99, 1.00 | <0.001 |
Adjacent | 1.00 | 1.00, 1.00 | <0.001 |
1
IRR = Incidence Rate Ratio, CI = Confidence Interval
|
The deviance for the Poisson regression is \[\begin{eqnarray*} D &=& 2 \sum_i [y_i \log(y_i) - y_i] - 2 \sum_i [y_i \log (\widehat{\mu}_i) - \widehat{\mu}_i] \\ &=& 2 \sum_i [y_i \log(y_i / \widehat{\mu}_i) - (y_i - \widehat{\mu}_i)] \\ &=& 2 \sum_i y_i \log(y_i / \widehat{\mu}_i), \end{eqnarray*}\] where \(\widehat{\mu}_i\) are the fitted values from the model. The Poisson deviance is also called the G-statistic.
For the Galápagos example, comparing the deviance \(D\) to \(\chi_{n - p}^2\) gives an extremely small p-value (why?), indicating a lack of fit.
An alternative goodness of fit test compares the Pearson \(X^2\) \[ X^2 = \sum_i \frac{(O_i - E_i)^2}{E_i} = \sum_i \frac{(y_i - \widehat{\mu}_i)^2}{\widehat{\mu}_i} \] to the asymptotic distribution \(\chi_{n - p}^2\). Again it indicates serious lack of fit.
# predmu = predict(modp, type = "response")
# sum((gala$Species - predmu)^2 / predmu)
(px2 <- sum(residuals(modp, type = "pearson")^2))
## [1] 761.9792
gala %>%
mutate(devres = residuals(modp, type = "deviance"),
linpred = predict(modp, type = "link")) %>%
ggplot +
geom_point(mapping = aes(x = linpred, y = devres)) +
labs(x = "Linear predictor", y = "Deviance residual")
gala %>%
mutate(perres = residuals(modp, type = "pearson"),
linpred = predict(modp, type = "link")) %>%
ggplot +
geom_point(mapping = aes(x = linpred, y = perres)) +
labs(x = "Linear predictor", y = "Pearson residual")
Fernandina
and Isabela
islands have high elevation and relatively large area.halfnorm(hatvalues(modp))
gala %>%
slice(c(12, 16))
## # A tibble: 2 x 8
## Island Species Endemics Area Elevation Nearest Scruz Adjacent
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Fernandina 93 35 634. 1494 4.3 95.3 4669.
## 2 Isabela 347 89 4669. 1707 0.7 28.1 634.
halfnorm(cooks.distance((modp)))
gala %>%
mutate(predmu = predict(modp, type = "response"),
res = Species - predmu) %>%
ggplot() +
geom_point(mapping = aes(x = predmu, y = res^2)) +
geom_abline(intercept = 0, slope = 1) +
labs(x = expression(hat(mu)), y = expression((y - hat(mu))^2)) +
scale_x_log10() +
scale_y_log10()
In overdispersion model, we assume an overdispersion parameter \(\phi\) such that \[ \operatorname{Var} Y_i = \phi \mu_i. \]
Given MLE, the overdispersion parameter is estimated by \[ \widehat{\phi} = \frac{X^2}{n - p}. \]
(dp <- px2 / modp$df.residual)
## [1] 31.74914
Area
, Elevation
and Adjacent
are significant, but not Nearest
and Scruz
.summary(modp, dispersion = dp)
##
## Call:
## glm(formula = Species ~ . - Endemics - Island, family = poisson,
## data = gala)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -8.2752 -4.4966 -0.9443 1.9168 10.1849
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.1548079 0.2915897 10.819 < 2e-16 ***
## Area -0.0005799 0.0001480 -3.918 8.95e-05 ***
## Elevation 0.0035406 0.0004925 7.189 6.53e-13 ***
## Nearest 0.0088256 0.0102621 0.860 0.390
## Scruz -0.0057094 0.0035251 -1.620 0.105
## Adjacent -0.0006630 0.0001653 -4.012 6.01e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 31.74914)
##
## Null deviance: 3510.73 on 29 degrees of freedom
## Residual deviance: 716.85 on 24 degrees of freedom
## AIC: 889.68
##
## Number of Fisher Scoring iterations: 5
drop1(modp, scale = dp, test = "F")
modd <- glm(Species ~ . - Endemics - Island, family = quasipoisson, data = gala)
summary(modd)
##
## Call:
## glm(formula = Species ~ . - Endemics - Island, family = quasipoisson,
## data = gala)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -8.2752 -4.4966 -0.9443 1.9168 10.1849
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.1548079 0.2915901 10.819 1.03e-10 ***
## Area -0.0005799 0.0001480 -3.918 0.000649 ***
## Elevation 0.0035406 0.0004925 7.189 1.98e-07 ***
## Nearest 0.0088256 0.0102622 0.860 0.398292
## Scruz -0.0057094 0.0035251 -1.620 0.118380
## Adjacent -0.0006630 0.0001653 -4.012 0.000511 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for quasipoisson family taken to be 31.74921)
##
## Null deviance: 3510.73 on 29 degrees of freedom
## Residual deviance: 716.85 on 24 degrees of freedom
## AIC: NA
##
## Number of Fisher Scoring iterations: 5
drop1(modd, test = "F")
## Single term deletions
##
## Model:
## Species ~ (Island + Endemics + Area + Elevation + Nearest + Scruz +
## Adjacent) - Endemics - Island
## Df Deviance F value Pr(>F)
## <none> 716.85
## Area 1 1204.35 16.3217 0.0004762 ***
## Elevation 1 2389.57 56.0028 1.007e-07 ***
## Nearest 1 739.41 0.7555 0.3933572
## Scruz 1 813.62 3.2400 0.0844448 .
## Adjacent 1 1341.45 20.9119 0.0001230 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
We can relate mean response \(\mu\) to the predictors via log link function \[ \eta = \mathbf{x}^T \boldsymbol{\beta} = \log \mu. \]
Pre-specify r=1
(\(\theta\) in MASS) and fit negative bionomial regression:
library(MASS)
##
## Attaching package: 'MASS'
## The following object is masked from 'package:gtsummary':
##
## select
## The following object is masked from 'package:dplyr':
##
## select
modn <- glm(Species ~ . - Endemics - Island, family = negative.binomial(1), data = gala)
summary(modn)
##
## Call:
## glm(formula = Species ~ . - Endemics - Island, family = negative.binomial(1),
## data = gala)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.7056 -0.6807 -0.1151 0.3578 1.4398
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.9040718 0.2726617 10.651 1.41e-10 ***
## Area -0.0006338 0.0003143 -2.017 0.05506 .
## Elevation 0.0038575 0.0007561 5.102 3.21e-05 ***
## Nearest 0.0027834 0.0149036 0.187 0.85342
## Scruz -0.0018568 0.0030569 -0.607 0.54929
## Adjacent -0.0007617 0.0002492 -3.057 0.00542 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(1) family taken to be 0.7232273)
##
## Null deviance: 54.069 on 29 degrees of freedom
## Residual deviance: 20.741 on 24 degrees of freedom
## AIC: 305.75
##
## Number of Fisher Scoring iterations: 16
r
(\(\theta\) in MASS) from data:glm.nb(Species ~ . - Endemics - Island, data = gala) %>%
summary()
##
## Call:
## glm.nb(formula = Species ~ . - Endemics - Island, data = gala,
## init.theta = 1.674602286, link = log)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.1344 -0.8597 -0.1476 0.4576 1.8416
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.9065247 0.2510344 11.578 < 2e-16 ***
## Area -0.0006336 0.0002865 -2.211 0.027009 *
## Elevation 0.0038551 0.0006916 5.574 2.49e-08 ***
## Nearest 0.0028264 0.0136618 0.207 0.836100
## Scruz -0.0018976 0.0028096 -0.675 0.499426
## Adjacent -0.0007605 0.0002278 -3.338 0.000842 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(1.6746) family taken to be 1)
##
## Null deviance: 88.431 on 29 degrees of freedom
## Residual deviance: 33.196 on 24 degrees of freedom
## AIC: 304.22
##
## Number of Fisher Scoring iterations: 1
##
##
## Theta: 1.675
## Std. Err.: 0.442
##
## 2 x log-likelihood: -290.223
bioChemists
data set contains 915 biochemistry graduate students. The outcome of interest is the number of articles produced during the last three years of the PhD.library(pscl)
## Classes and Methods for R developed in the
## Political Science Computational Laboratory
## Department of Political Science
## Stanford University
## Simon Jackman
## hurdle and zeroinfl functions by Achim Zeileis
(bioChemists <- as_tibble(bioChemists))
## # A tibble: 915 x 6
## art fem mar kid5 phd ment
## <int> <fct> <fct> <dbl> <dbl> <int>
## 1 0 Men Married 0 2.52 7
## 2 0 Women Single 0 2.05 6
## 3 0 Women Single 0 3.75 6
## 4 0 Men Married 1 1.18 3
## 5 0 Women Single 0 3.75 26
## 6 0 Women Married 2 3.59 2
## 7 0 Women Single 0 3.19 3
## 8 0 Men Married 2 2.96 4
## 9 0 Men Single 0 4.62 6
## 10 0 Women Married 0 1.25 0
## # … with 905 more rows
bioChemists %>%
ggplot() +
geom_bar(mapping = aes(x = art, fill = fem)) +
labs(x = "Articles", y = "Count", title = "Publications by PhD Students")
bioChemists %>%
ggplot() +
geom_bar(mapping = aes(x = art, fill = mar))
modp <- glm(art ~ ., family = poisson, data = bioChemists)
summary(modp)
##
## Call:
## glm(formula = art ~ ., family = poisson, data = bioChemists)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.5672 -1.5398 -0.3660 0.5722 5.4467
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.304617 0.102981 2.958 0.0031 **
## femWomen -0.224594 0.054613 -4.112 3.92e-05 ***
## marMarried 0.155243 0.061374 2.529 0.0114 *
## kid5 -0.184883 0.040127 -4.607 4.08e-06 ***
## phd 0.012823 0.026397 0.486 0.6271
## ment 0.025543 0.002006 12.733 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1817.4 on 914 degrees of freedom
## Residual deviance: 1634.4 on 909 degrees of freedom
## AIC: 3314.1
##
## Number of Fisher Scoring iterations: 5
tibble(ocount = table(bioChemists$art)[1:8], # observed count for 0:7
pcount = colSums(predprob(modp)[, 1:8]), # expected count for 0:7
count = 0:7) %>%
ggplot(mapping = aes(x = pcount, y = ocount, label = count)) +
geom_point() +
geom_text(nudge_y = 8) +
labs(x = "Predicted", y = "Observed")
## Don't know how to automatically pick scale for object of type table. Defaulting to continuous.
library(gtsummary)
modh <- hurdle(art ~ ., data = bioChemists)
summary(modh)
##
## Call:
## hurdle(formula = art ~ ., data = bioChemists)
##
## Pearson residuals:
## Min 1Q Median 3Q Max
## -2.4105 -0.8913 -0.2817 0.5530 7.0324
##
## Count model coefficients (truncated poisson with log link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.67114 0.12246 5.481 4.24e-08 ***
## femWomen -0.22858 0.06522 -3.505 0.000457 ***
## marMarried 0.09649 0.07283 1.325 0.185209
## kid5 -0.14219 0.04845 -2.934 0.003341 **
## phd -0.01273 0.03130 -0.407 0.684343
## ment 0.01875 0.00228 8.222 < 2e-16 ***
## Zero hurdle model coefficients (binomial with logit link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.23680 0.29552 0.801 0.4230
## femWomen -0.25115 0.15911 -1.579 0.1144
## marMarried 0.32623 0.18082 1.804 0.0712 .
## kid5 -0.28525 0.11113 -2.567 0.0103 *
## phd 0.02222 0.07956 0.279 0.7800
## ment 0.08012 0.01302 6.155 7.52e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Number of iterations in BFGS optimization: 12
## Log-likelihood: -1605 on 12 Df
modz <- zeroinfl(art ~ ., data = bioChemists)
summary(modz)
##
## Call:
## zeroinfl(formula = art ~ ., data = bioChemists)
##
## Pearson residuals:
## Min 1Q Median 3Q Max
## -2.3253 -0.8652 -0.2826 0.5404 7.2976
##
## Count model coefficients (poisson with log link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.640839 0.121307 5.283 1.27e-07 ***
## femWomen -0.209144 0.063405 -3.299 0.000972 ***
## marMarried 0.103750 0.071111 1.459 0.144567
## kid5 -0.143320 0.047429 -3.022 0.002513 **
## phd -0.006166 0.031008 -0.199 0.842376
## ment 0.018098 0.002294 7.888 3.07e-15 ***
##
## Zero-inflation model coefficients (binomial with logit link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.577060 0.509386 -1.133 0.25728
## femWomen 0.109752 0.280082 0.392 0.69517
## marMarried -0.354018 0.317611 -1.115 0.26501
## kid5 0.217095 0.196483 1.105 0.26920
## phd 0.001275 0.145263 0.009 0.99300
## ment -0.134114 0.045243 -2.964 0.00303 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Number of iterations in BFGS optimization: 19
## Log-likelihood: -1605 on 12 Df
The coefficients for the binary response part take opposite signs from those from the hurdle model, because hurdle model models the probability of observing a nonzero and ZIP models the probability of always observing zero.
tibble(fitted_h = fitted(modh),
fitted_z = fitted(modz)) %>%
ggplot() +
geom_point(mapping = aes(x = fitted_h, y = fitted_z)) +
geom_abline(intercept = 0, slope = 1) +
labs(x = "Hurdle predictions", y = "ZIP predictions")
fem
, kid5
, and ment
and the Bernoulli model uses predictor ment
.modz2 <- zeroinfl(art ~ fem + kid5 + ment | ment, data = bioChemists)
summary(modz2)
##
## Call:
## zeroinfl(formula = art ~ fem + kid5 + ment | ment, data = bioChemists)
##
## Pearson residuals:
## Min 1Q Median 3Q Max
## -2.2802 -0.8807 -0.2718 0.5131 7.4788
##
## Count model coefficients (poisson with log link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.694517 0.053025 13.098 < 2e-16 ***
## femWomen -0.233857 0.058400 -4.004 6.22e-05 ***
## kid5 -0.126516 0.039668 -3.189 0.00143 **
## ment 0.018004 0.002224 8.096 5.67e-16 ***
##
## Zero-inflation model coefficients (binomial with logit link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.68488 0.20529 -3.336 0.000849 ***
## ment -0.12680 0.03981 -3.185 0.001448 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Number of iterations in BFGS optimization: 22
## Log-likelihood: -1608 on 6 Df
The LRT yields a large p-value, indicating the smaller model is justifiable.
lrt <- 2 * (modz$loglik - modz2$loglik)
pchisq(lrt, 6, lower.tail = FALSE)
## [1] 0.4041153
exp(coef(modz2))
## count_(Intercept) count_femWomen count_kid5 count_ment
## 2.0027411 0.7914748 0.8811604 1.0181669
## zero_(Intercept) zero_ment
## 0.5041522 0.8809081
tibble(fem = "Men", mar = "Single", kid5 = 0, ment = 6) %>%
predict(modz2, newdata = ., type = "prob")
## 0 1 2 3 4 5 6
## 1 0.2775879 0.1939403 0.21636 0.1609142 0.08975799 0.04005363 0.01489462
## 7 8 9 10 11 12
## 1 0.004747556 0.001324094 0.0003282578 7.324092e-05 1.485593e-05 2.762214e-06
## 13 14 15 16 17 18
## 1 4.740812e-07 7.555503e-08 1.123857e-08 1.567219e-09 2.05693e-10 2.54968e-11
## 19
## 1 2.994131e-12
The zero part of model contributes 0.191 and the Poisson part contributes 0.087.
tibble(fem = "Men", mar = "Single", kid5 = 0, ment = 6) %>%
predict(modz2, newdata = ., type = "zero")
## 1
## 0.190666