rm(list = ls()) # clean-up workspace
library("tidyverse")
## ── Attaching packages ───────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.2 ✓ purrr 0.3.4
## ✓ tibble 3.0.3 ✓ dplyr 1.0.2
## ✓ tidyr 1.1.2 ✓ stringr 1.4.0
## ✓ readr 1.3.1 ✓ forcats 0.5.0
## ── Conflicts ──────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
In this lab, we practice reading data from a PDF file and extract information from strings.
Here is a reference that you could follow.
The pdf file “gisaid_id_table.pdf” has information about COVID_19 sequences that contain certain mutations.
The task is to extract all of the Accesssion IDs from the pdf file.
In the end, output a text file as “EPI_ids.txt” that contains all the accession ids.
Good luck!
writeLines(readLines("EPI_ids.txt", 10))
## EPI_id
## EPI_ISL_417765
## EPI_ISL_418332
## EPI_ISL_420159
## EPI_ISL_421690
## EPI_ISL_424369
## EPI_ISL_424372
## EPI_ISL_426794
## EPI_ISL_432503
## EPI_ISL_432511